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Introduction



Early phases of clinical drug development
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Multiple treatment schedules in phase I and II trials

• Treatment schedule: Frequency of administration, e.g. a daily or a
weekly schedule

• Recently, phase I or II trials investigating multiple schedules have
become more popular, for instance:

• In oncology (de Lima et al., 2010)

• In atopic dermatitis (Thaçi et al., 2016)

• In hypercholesterolemia (Pfizer, 2017)

• Limited literature exists on statistical methods to analyze data from
such trials (Guo et al., 2016)
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Meta-analysis of clinical trials

• Hierarchy of evidence
(Greenhalgh, 1997)

Case Series / Reports

Case Control Studies

Cohort Studies

Randomized
Controlled Trials

Meta-analysis

• Statistical methods to combine
multiple trials to address a
question of interest

• Common methods
• Fixed-effects meta-analysis
• Random-effects meta-analysis

• Challenges to conduct a
meta-analysis

• Rare events, outcomes with
very low event probabilities

• Few trials, e.g. five or fewer
trials
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Bayesian methods in clinical drug development

• A particular approach to solve
statistical problems

• Bayes’ theorem:

f (θ|x) ∝ f (x |θ) f (θ)

• f (θ|x) the posterior
• f (x |θ) the likelihood
• f (θ) the prior

• Bayesian methods used, for example:

• In phase I dose-escalation trials, Continual Reassessment Method
(O’Quigley et al., 1990)

• In phase II trials (Thomas, 2006)

• In meta-analysis of clinical trials (Smith et al., 1995)
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Three major focus areas of the dissertation
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Phase I dose-escalation trials
with multiple schedules
(Günhan et al, 2020a and
Günhan et al, 2020b)



Phase I dose-escalation trials

• Small cohorts of patients are
treated in treatment cycles

• Relationship between dose and
probability of
dose-limiting-toxicities (DLTs)

• Aim: Informing dose-escalation
decisions and finding the
maximum tolerated dose
(MTD)

• With multiple schedules, two
types of designs possible
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1) Simultaneous investigation of multiple schedules

• Dose and schedule are varied within the same trial

• Finding maximum tolerated dose and schedule combination (MTC)

Cohort Frequency Dose Number Number MTC
(hrs) (mg) of pats of DLTs

1 192 8 1 0 No
2 96 16 1 0 No
3 96 24 1 0 No
...

...
...

...
...

...
30 24 24 1 0 Yes!
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2) Sequential investigation of multiple schedules

Cohort Frequency Dose Number Number MTD
(hrs) (mg) of pats of DLTs

1 48 2.5 3 0 No
2 48 5 3 0 No
...

...
...

...
...

...
7 48 15 3 1 Yes!

Cohort Frequency Dose Number Number MTD
(hrs) (mg) of pats of DLTs

8 24 10 3 1 No
9 24 7.5 3 1 No
...

...
...

...
...

...
14 24 7.5 3 0 Yes!
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A Bayesian time-to-event pharmacokinetic model (TITE-PK)

• Modelling time to first DLTs, depends on an exposure measure E (t)

• Exposure measure based on drug pharmacokinetics (PK), treated
as fixed

• Use of planned schedule and known PK parameter elimination rate
constant

• A time-varying Poisson process

• Hazard h(t) and cumulative hazard H(t) given by

h(t) =β E (t) =⇒ H(t) = β AUCE (t)
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Time-to-event pharmacokinetic model (TITE-PK) (cont.)

• Metric to inform dose-escalation decisions:
End-of-cycle 1 DLT probability

P(T ≤ t∗|d , f ) = 1− exp(−H(t∗|d , f ))

• Three categories for P(T ≤ t∗|d , f )

(i) P(T ≤ t∗|d , f ) < 0.20 Underdosing (UD)

(ii) 0.20 ≤ P(T ≤ t∗|d , f ) ≤ 0.40 Targeted toxicity (TT)

(iii) P(T ≤ t∗|d , f ) > 0.40 Overdosing (OD)

• Escalation with overdose control (EWOC) (Babb et al., 1998)

• P(P(T ≤ t∗|d , f ) ≥ 0.40) should not exceed 0.25

10/39



Visualization of the dose-schedule decisions
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Visualization of the dose-schedule decisions
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Simulation setup (Sequential design)

• Comparison of performances: TITE-PK vs Bridging Continual
Reassessment Method (B-CRM) (Liu et al., 2015)

• B-CRM: Extension of CRM to analyze bridging trials

• Simulations are motivated by the Everolimus trial (NCT00466466)

• Sequential design:

• S1: Once every two days

• S2: Daily

• Performance measures:

• The percentage of correct MTD declarations

• Mean number of patients required in the trial
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Toxicity probabilities of simulation scenarios

Scenario Schedule
Doses in mg

2.5 5 7.5 10 12.5 15

1 S1 0.05 0.07 0.09 0.10 0.13 0.18
S2 0.08 0.12 0.16 0.18 0.23 0.27

2 S1 0.08 0.12 0.16 0.20 0.23 0.27
S2 0.18 0.26 0.34 0.45 0.49 0.55

3 S1 0.03 0.12 0.28 0.40 0.54 0.62
S2 0.20 0.30 0.45 0.50 0.60 0.75

4 S1 0.05 0.07 0.09 0.15 0.22 0.28
S2 0.30 0.35 0.48 0.52 0.61 0.70

5 S1 0.45 0.50 0.55 0.65 0.75 0.85
S2 0.48 0.56 0.62 0.70 0.80 0.88
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Simulation results
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Further results for the proposed method TITE-PK

• Sequential investigation of multiple schedules (Günhan et al., 2020b)

• The Everolimus application is reanalyzed to illustrate TITE-PK

• Simultaneous investigation of multiple schedules (Günhan et al.,
2020a)

• TITE-PK was shown to improve correct MTC declarations with lower
sample sizes in simulation studies
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Conclusions and outlook

• A time-to-event PK model to analyze phase I trials with multiple
schedules

• Displays better performance in terms of the correct MTD
declarations in simulations

• Possible extensions include

• Modelling multiple compounds (possible interactions must be taken
into account)

• Considering long-term safety events, not only time-to-first DLTs
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Phase II dose-finding trials with
multiple schedules (Günhan
et al., 2020c)



MOR106 trial: NCT03568071

• A phase II dose-finding trial:
MOR106 investigated for the
treatment of atopic dermatitis

• Primary outcome:
The percentage change from
baseline in Eczema Area and
Severity Index at Day 85

Arm Schedule
Dose
(mg/kg)

1 Bi-weekly 0
2 Bi-weekly 1
3 Bi-weekly 3
4 Bi-weekly 10
5 Monthly 1
6 Monthly 3

17/39



The general model

• For schedule i , dose j , and patient k

yijk = f (d
(i)
j ,θ) + εijk , εijk ∼ N (0, σ2

i )

• The Emax model for dose-response relationship:

f (d
(i)
j ,θ) = E(i)

0 + E(i)
max

d
(i)
j

ED(i)
50 + d

(i)
j

• E(i)
0 placebo effect

• E(i)
max maximum effect

• ED(i)
50 dose providing half of the maximum effect
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Different ways to estimate dose-response functions

• Estimating separate curves for each schedule (stratification)

• Ignores the potential similarity in the dose-response functions

• Scaling doses to a common unit and pooling doses from different
schedules (complete pooling; CP)

• Ignores the potential heterogeneity in the dose-response functions

• Partial pooling with fixed-effects (PP - FE) (Feller et al., 2017)

• E(i)
0 are shared between schedules: E(1)

0 = E(2)
0 = . . .

• For some situations also E(i)
max, but perhaps not ED

(i)
50

• Using schedule specific fixed-effects for E(i)
max and/or ED(i)

50
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Proposed method: Partial pooling with random-effects

• Schedule specific random-effects for E(i)
max and/or ED(i)

50 (PP - RE)

• Exchangeable around an overall mean

• ED(i)
50: Re-scaling and log transformation

• ED∗(i)
50 = ED(i)

50
f (i)

f
(iref)

, f (i) frequency of administration in hours

• log(ED∗(i)
50 ) ∼ N (µED50 , τ

2
ED50)
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Prior distributions

• Vague priors: N (0, 1002) for E0 and E(i)
max and HN (100) for σi

• Weakly informative prior (WIP) for τED50: HN (1) (Friede et al.,
2017)

• In the frequentist framework, usually bounds are imposed on ED50

to ensure convergence, e.g. [0, 1.5×max(d
(i)
j )]

• Functional uniform priors for ED(i)
50 (Bornkamp, 2014):

Uniformly distributed on the potential different shapes of the
underlying Emax model
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Simulation setup

• The design of each trial and true values for the model parameters
are motivated by the MOR106 trial

• EDbi-weekly
50 is 2 mg/kg

• 9 scenarios: EDmonthly
50 ∈ {1, 2, 3, 3.5, 4, 4.5, 5, 6, 10 (mg/kg)}

• Performance measures:

• Mean absolute error of the point estimates for the dose-response
function evaluated at each dose level of a grid

• Mean coverage probability of the interval estimates evaluated at each
dose level of a grid
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Simulation results
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Conclusions and outlook

• Partial pooling with schedule specific random-effects:

• yields more robust mean absolute error and higher coverage
compared to the alternatives

• R package which implements the proposed method, ModStan, is
publicly available: https://github.com/gunhanb/ModStan

• Possible extensions:

• Taking into account model uncertainty, considering other
dose-response models

• Meta-analysis of dose-response models
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Meta-analysis of few studies
involving rare events (Günhan
et al., 2020d)



Cochrane Database of Systematic Reviews

• The richest resource of meta-analyses of randomized controlled trials
in the world

• I analysed:

• All datasets available in March 2018

• Binomial endpoint, both efficacy and safety analyses

• In total, 37 773 meta-analysis datasets
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Cochrane Database: Number of studies
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Cochrane Database: Number of studies

66%
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Cochrane Database: Rare events

Arm
Event

Sample size
Yes No

Treatment a b a + b
Control c d c + d

• Percentage of meta-analyses
with at least

• one single-zero study: 38%
• one double-zero study: 1%

• Standard meta-analysis methods rely on large sample properties
(Bradburn et al., 2007)
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The statistical model (Smith et al., 1995)

• For trial i , number of events ri ∼ Bin(πi , ni )

logit(πi ) =

{
µi − 0.5 · θi (control arm)

µi + 0.5 · θi (treatment arm)

• Random treatment effects: θi ∼ N (θ, τ2)

• θ on the log-odds ratio scale

• Baseline risks (µi ) trial-specific fixed-effects
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A weakly informative prior (WIP) for θ

• A WIP for heterogeneity parameter τ , e.g. a half-normal prior

• A priori the odds ratio is with 95% probability confined to a certain
range:

P(1/δ < exp(θ) < δ) = 95%

• Normal prior: σ = log(δ)
1.96

• Say, conservatively, δ = 250 implies θ ∼ N (0, 2.822)

• The use of a WIP may be interpreted as a penalizing approach
(Greenland and Mansournia, 2015)
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Cochrane Database: The distribution of the estimates of θ
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Cochrane Database: The distribution of the estimates of θ
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Further results

• Simulations are conducted to assess the performance of the use of
WIP for θ

• Compared to alternatives, the proposed method displayed

• lower bias for θ

• shorter interval estimates for θ with somewhat higher coverage than
nominal level

• An R package MetaStan is available on CRAN
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Discussion and outlook

• Use of WIP for θ and τ for the meta-analysis of few studies
involving rare events

• A WIP can be derived for θ by considering a priori interval for θ on
the log-odds ratio scale

• Empirical investigation from the Cochrane Library supports the
proposed WIP

• Future extensions include other type of models, e.g.

• Poisson-Normal Hierarchical model (Böhning et al., 2015), which can
take into account length of follow-up

• Network meta-analysis (Günhan et al., 2018) models, which
investigates multiple treatments and multi-arm trials
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Conclusion



Conclusion
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Stan: A programming language

• Calculating posterior distributions can be hard
Conjugate models (analytically solvable) restrict the choice of
likelihood and priors

• Markov chain Monte Carlo methods
Generate samples from posterior distribution

• BUGS-based programs (WinBUGS, JAGS) uses Gibbs and
Metropolis-Hasting samplers

• Stan uses Hamiltonian Monte Carlo sampler, uses the geometric
nature of the target distribution



Vaccine trials

• Unlike drugs, which are given to patients, vaccines are received by
whole population, thus the safety margin should be very high

• Efficacy based on the protection offered: Binomial enpoint

• Immunogenic endpoint: Antibody concentration, continous endpoint

• Phase I trials:
• Oncology vs non-oncology
• Oncology: The higher the dose, the greater the likelihood of efficacy

and toxicity
• DLT cause the halting of the trial

• Phase II trials:
• Binomial endpoint: Use of a binomial likelihood

• Rare events:
• Binomial endpoint
• Based on the prevalence, we may encounter rare events



Likelihood estimation

• Firth penalization:
• Penalty terms may be specified so that these nudge the MLE into a

desired direction if the maximum is not or poorly defined; one such
example is Firth penalization (Firth, 1993)

• Random-effects meta-analysis
• Bayesian modal estimation to avoid zero estimates (Chung et al,

2013)



Pseudo-PK model
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Pseudo-PK model

What body does to the drug



Priors in TITE-PK

• TITE-PK: log(β) ∼ N (cloglog(P(T ≤ t∗|d∗, f ∗) = 0.30), 1.252)

where cloglog (x) = log(-log(1-x))



Everolimus trial



Dose-escalation decision criteria

• Cohort sizes of 3

• Next dose / Current dose ≤ 2

• Minimum number of patients at MTD: 6

• Maximum number of patients: 60

• Minimum number of patients: 21

• MTD declaration: P(OD) ≤ 0.25



WIP for the heterogeneity parameter



Simulation setup

• Motivated by the MOR106 trial

• Each generated trial includes one placebo arm and 1, 3, and 10
mg/kg for both bi-weekly and monthly schedules.

• Outcome: Percentage change from baseline in EASI score

• True values for E(i)
0 , E(i)

max and σi are taken as -20%, -60%, and 35%
for both schedules, respectively.

• EDbi-weekly
50 is 2 mg/kg.

• Sample sizes 45 for each arm.

• 9 scenarios: EDmonthly
50 ∈ {1, 2, 3, 3.5, 4, 4.5, 5, 6, 10 (mg/kg)}

• Data-generating process: Emax model

• 1 000 replications



Scenarios (monthly schedule)



Comparison of four methods

1. CP (Frequentist): Complete pooling using a frequentist framework

2. CP (Bayesian): Complete pooling using a Bayesian framework

3. PP - FE: Partial pooling with schedule specific fixed-effects for
ED(i)

50 using a Bayesian framework

4. PP - RE: Partial pooling with schedule specific random-effects for
ED(i)

50 using a Bayesian framework



Performance measures for the biweekly schedule

1. Mean absolute error
1/|D|Σi∈D |f (i)− f̂ (i)| at each i (prespecified dose levels), f̂ (i) the
point estimates for the dose-response function f (i)

2. Mean coverage probability
Mean coverage probability of the interval estimates evaluated at
each i

3. Mean interval length
Mean length of the interval estimates at each i



Simulation results

• Ratio of the CI lengths obtained by PP - FE to PP - RE



Bococizumab trial: NCT01592240

• A phase II dose-finding trial:
Bococizumab investigated for
the treatment of
hypercholesterolemia

• Primary outcome:
The change from baseline in
low-density lipoprotein
cholesterol (LDL-C) at Day 85

Arm Schedule Dose
(mg)

1 Bi-weekly 0
2 Bi-weekly 50
3 Bi-weekly 100
4 Bi-weekly 150
5 Monthly 0
6 Monthly 200
7 Monthly 300



Simulation settings

• Numbers of studies:
k ∈ {2, 3, 5}

• Treatment effects:
θ ∈ {−5,−4,−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3, 4, 5}

• Baseline risks µi on the probability scale are taken uniformly
between 0.005 and 0.05.

• The degree of heterogeneity (τ = 0.28) and sample sizes are based
on Cochrane Database.

• Data-generating process: BNHM



Comparison of five meta-analysis methods

1. WIP: WIP for τ and WIP for θ, BNHM

2. vague: WIP for τ and vague prior for θ (θ ∼ N (0, 1002)), BNHM

3. MLE: BNHM

4. MH: Mantel-Haenszel method, a fixed-effect method

5. BBM: Beta-binomial model (Bayesian)



Simulation results
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Simulation results
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Effects of treatment coding (Jackson et al., 2018)



An R package for meta-analysis using Stan: MetaStan

Available on CRAN

install.packages("MetaStan")

Fitting a BNHM using WIP for θ and τ

meta_stan(data = mydata,
nctrl = nctrl,
rctrl = rctrl,
ntrt = ntrt,
rtrt = rtrt,
tau_prior_dist = "half-normal",
tau_prior = 0.5,
delta = 250)

vignette("MetaStan_BNHM")
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