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Multiple treatment schedules in phase | and Il trials

e Treatment schedule: Frequency of administration, e.g. a daily or a
weekly schedule

e Recently, phase | or Il trials investigating multiple schedules have
become more popular, for instance:

e In oncology (de Lima et al., 2010)
e In atopic dermatitis (Thagi et al., 2016)

e In hypercholesterolemia (Pfizer, 2017)

e Limited literature exists on statistical methods to analyze data from
such trials (Guo et al., 2016)
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Meta-analysis of clinical trials

e Hierarchy of evidence
(Greenhalgh, 1997)

e Statistical methods to combine
multiple trials to address a

question of interest

e Common methods

e Fixed-effects meta-analysis

--------- e Random-effects meta-analysis
Randomized
Controlled Trials

e Challenges to conduct a
meta-analysis

e Rare events, outcomes with
"""""""""" very low event probabilities
e Few trials, e.g. five or fewer
........................ trials

Case Series / Reports
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Bayesian methods in clinical drug development

e A particular approach to solve

statistical problems

s Prior
/N — Likelihood

e Bayes' theorem: I\ | —~ Posterior
f(0]x) o< f(x]0) f(0)
f(6]x) the posterior

f(x|0) the likelihood
e f(0) the prior

e Bayesian methods used, for example:

e In phase | dose-escalation trials, Continual Reassessment Method
(O'Quigley et al., 1990)
e In phase Il trials (Thomas, 2006)

e In meta-analysis of clinical trials (Smith et al., 1995)
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Three major focus areas of the dissertation

Phase | dose-escalation trials

Phase |l dose-finding trials

Meta-analysis of clinical trials

With multiple schedules

Simultaneous investigation
of multiple schedules
(Giinhan et al, 2020a)

With multiple schedules

Bayesian methods

Sequential investigation of
multiple schedules
(Glinhan et al, 2020b)

Few studies with rare events

(Giinhan et al, 2020d)

(Giinhan et al, 2020c)
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Phase | dose-escalation trials
with multiple schedules
(Giinhan et al, 2020a and
Giinhan et al, 2020b)



Phase | dose-escalation trials

e Small cohorts of patients are
. 0.6
treated in treatment cycles

e Relationship between dose and
probability of

I
N

dose-limiting-toxicities (DLTs)

e Aim: Informing dose-escalation

DLT probabilities

decisions and finding the

=)
)

maximum tolerated dose
(MTD)

e With multiple schedules, two i 5 i T
Dose (mg/daily)

types of designs possible
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1) Simultaneous investigation of multiple schedules

e Dose and schedule are varied within the same trial

e Finding maximum tolerated dose and schedule combination (MTC)
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1) Simultaneous investigation of multiple schedules

e Dose and schedule are varied within the same trial

e Finding maximum tolerated dose and schedule combination (MTC)

Cohort  Frequency Dose Number Number MTC
(hrs) (mg)  of pats of DLTs
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1) Simultaneous investigation of multiple schedules

e Dose and schedule are varied within the same trial

e Finding maximum tolerated dose and schedule combination (MTC)

Cohort  Frequency Dose Number Number MTC
(hrs) (mg)  of pats of DLTs

1 192 8 1 0 No
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1) Simultaneous investigation of multiple schedules

e Dose and schedule are varied within the same trial

e Finding maximum tolerated dose and schedule combination (MTC)

Cohort  Frequency Dose Number Number MTC
(hrs) (mg)  of pats of DLTs

192 8 1 0 No

96 16 1 0 No

3 96 24 1 0 No
30 24 24 1 0 Yes!
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2) Sequential investigation of multiple schedules

Cohort  Frequency Dose Number Number MTD
(hrs) (mg)  of pats of DLTs

1 48 23 3 0 No
48 5 3 0 No
7 48 15 g 1 Yes!
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2) Sequential investigation of multiple schedules

Cohort  Frequency Dose Number Number MTD
(hrs) (mg)  of pats of DLTs

1 48 23 3 0 No
48 5 3 0 No
7 48 15 g 1 Yes!

Cohort  Frequency Dose Number Number MTD
(hrs) (mg)  of pats of DLTs

8 24 10 3 1 No
9 24 7.5 3 1 No
14 24 7.5 3 0 Yes!
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A Bayesian time-to-event pharmacokinetic model (TITE-PK)

e Modelling time to first DLTs, depends on an exposure measure E(t)

e Exposure measure based on drug pharmacokinetics (PK), treated
as fixed

e Use of planned schedule and known PK parameter elimination rate
constant

e A time-varying Poisson process

e Hazard h(t) and cumulative hazard H(t) given by

h(t) =B E(t) = H(t) = BAUCE(t)
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Time-to-event pharmacokinetic model (TITE-PK) (cont.)

e Metric to inform dose-escalation decisions:
End-of-cycle 1 DLT probability

P(T < t*|d, f) = 1 — exp(—H(t*|d, f))

e Three categories for P(T < t*|d, f)
(i) P(T < t*|d,f) < 0.20 Underdosing (UD)
(i) 0.20 < P(T < t*|d,f) <040  Targeted toxicity (TT)
(iii) P(T < t*|d,f) > 0.40 Overdosing (OD)
e Escalation with overdose control (EWOC) (Babb et al., 1998)

e P(P(T < t*|d, f) > 0.40) should not exceed 0.25
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Visualization of the dose-schedule decisions

Probability density

0.00 0.20 0.40 0.60 0.80 1.00
End of cycle 1 DLT probability
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Visualization of the dose-schedule decisions

0.36 > 0.25
Too toxic!

Probability density

0.00 0.20 0.40 0.60 0.80 1.00
End of cycle 1 DLT probability
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Simulation setup (Sequential design)

e Comparison of performances: TITE-PK vs Bridging Continual
Reassessment Method (B-CRM) (Liu et al., 2015)

B-CRM: Extension of CRM to analyze bridging trials

Simulations are motivated by the Everolimus trial (NCT00466466)

Sequential design:

e Si: Once every two days

e S: Daily

Performance measures:

e The percentage of correct MTD declarations

e Mean number of patients required in the trial
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Toxicity probabilities of simulation scenarios

Doses in mg

Scenario Schedule

2.5 5 7.5 10 125 15

1 S 0.05 0.0r 0.09 0.10 0.13 0.18
Ss 0.08 0.12 016 0.18 0.23 0.27
2 S 0.08 0.12 016 0.20 0.23 0.27
Sy 0.18 0.26 0.34 045 049 0.55
g S 0.03 012 0.28 0.40 0.54 0.62
So 0.20 0.30 045 050 060 0.75
4 S 0.05 0.07 0.09 015 0.22 0.28
Ss 0.30 0.35 048 052 061 0.70
5 S 0.45 050 055 0.65 075 0.85
So 0.48 056 062 070 0.80 0.88
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Further results for the proposed method TITE-PK

e Sequential investigation of multiple schedules (Giinhan et al., 2020b)

e The Everolimus application is reanalyzed to illustrate TITE-PK

e Simultaneous investigation of multiple schedules (Giinhan et al.,
2020a)

e TITE-PK was shown to improve correct MTC declarations with lower
sample sizes in simulation studies
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Conclusions and outlook

e A time-to-event PK model to analyze phase | trials with multiple
schedules

e Displays better performance in terms of the correct MTD
declarations in simulations

e Possible extensions include

e Modelling multiple compounds (possible interactions must be taken
into account)

e Considering long-term safety events, not only time-to-first DLTs
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Phase Il dose-finding trials with
multiple schedules (Giinhan
et al., 2020c)



MOR106 trial: NCT03568071

Dose
e A phase Il dose-finding trial: A S (mg/kg)

MOR106 investigated for the

. . 1 Bi-weekly 0
treatment of atopic dermatitis )
2 Bi-weekly 1
e Primary outcome: 3 Bi-weekly 3
The percentage change from 4 Bi-weekly 10
baseline in Eczema Area and 5 Monthly 1
Severity Index at Day 85 6 Monthly 3
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The general model

e For schedule /, dose j, and patient k

Yijk = f(dj(i)ﬁ) + €y €k ~ N(0,07)

e The Emax model for dose-response relationship:
(0 N i
f(d;",0) =Ey’ +Ey), —~1—
O =B e o
° Ef)i) placebo effect

° ES,’?aX maximum effect

° EDé’g dose providing half of the maximum effect
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Different ways to estimate dose-response functions

e Estimating separate curves for each schedule (stratification)

e Ignores the potential similarity in the dose-response functions

e Scaling doses to a common unit and pooling doses from different
schedules (complete pooling; CP)

e Ignores the potential heterogeneity in the dose-response functions

e Partial pooling with fixed-effects (PP - FE) (Feller et al., 2017)
° Eg) are shared between schedules: Egl) = Egz) = J

e For some situations also E{),, but perhaps not EDg’g

e Using schedule specific fixed-effects for ng,)ax and/or EDgg
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Proposed method: Partial pooling with random-effects

e Schedule specific random-effects for E) and/or EDgg (PP - RE)

e Exchangeable around an overall mean

° ED(Sg: Re-scaling and log transformation

£()

o ED;) = EDS) (.

() frequency of administration in hours

° lOg(ED;(()I)) ~ N(:U/EDsoa TéDso)
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Prior distributions

e Vague priors: A(0,1002) for Eg and E{). and #N/(100) for o;

e Weakly informative prior (WIP) for 7epso: HN (1) (Friede et al.,
2017)

e In the frequentist framework, usually bounds are imposed on EDsg
to ensure convergence, e.g. [0, 1.5 X max(dj('))]

e Functional uniform priors for EDg’g (Bornkamp, 2014):
Uniformly distributed on the potential different shapes of the

underlying Emax model

21/39



Simulation setup

e The design of each trial and true values for the model parameters
are motivated by the MOR106 trial

° EDggweekly is 2 mg/kg

e 9 scenarios: ED'5"0Onthly €{1,2,3,3.5,4,4.5,5,6,10 (mg/kg)}

e Performance measures:

e Mean absolute error of the point estimates for the dose-response

function evaluated at each dose level of a grid

e Mean coverage probability of the interval estimates evaluated at each

dose level of a grid
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Conclusions and outlook

e Partial pooling with schedule specific random-effects:

e yields more robust mean absolute error and higher coverage
compared to the alternatives

e R package which implements the proposed method, ModStan, is
publicly available: https://github.com/gunhanb/ModStan

e Possible extensions:

e Taking into account model uncertainty, considering other
dose-response models

e Meta-analysis of dose-response models
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https://github.com/gunhanb/ModStan

Meta-analysis of few studies
involving rare events (Giinhan
et al., 2020d)



Cochrane Database of Systematic Reviews

e The richest resource of meta-analyses of randomized controlled trials
in the world
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Cochrane Database of Systematic Reviews

e The richest resource of meta-analyses of randomized controlled trials
in the world

e | analysed:

e All datasets available in March 2018

e Binomial endpoint, both efficacy and safety analyses
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Cochrane Database of Systematic Reviews

e The richest resource of meta-analyses of randomized controlled trials
in the world

e | analysed:

e All datasets available in March 2018
e Binomial endpoint, both efficacy and safety analyses

e In total, 37 773 meta-analysis datasets
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Cochrane Database: Number of

9000

6000

Frequency

3000

Hﬂﬂml_ll_h—u—hmﬁﬁﬁﬁ

:

9 10 ll 12 13 14 15 16 17 18
Number of studles k included in a meta—analysis

19+
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Cochrane Database: Number of dies

66%

Frequency

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19+
Number of studies k included in a meta—analysis
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Cochrane Database: Rare events

Event . f meta-analyses
Arm _ Sample size O ez © y

Yes No with at least

e one single-zero study: 38%
Treatment a b a+b

e one double-zero study: 1%
Control c d c+d
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Cochrane Database: Rare events

Event . -
Arm Sample size e Percentage of meta-analyses

Yes No with at least

e one single-zero study: 38%
Treatment a b a+b

e one double-zero study: 1%
Control c d c+d

e Standard meta-analysis methods rely on large sample properties
(Bradburn et al., 2007)
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The statistical model (Smith et al., 1995)

For trial i, number of events r; ~ Bin(7;, n;)

logit(7;) = {Mi —0.5-0; (control arm)

pi +0.5-0; (treatment arm)

Random treatment effects: 6; ~ N(6,72)

# on the log-odds ratio scale

Baseline risks (u;) trial-specific fixed-effects
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A weakly informative prior (WIP) for ¢

e A WIP for heterogeneity parameter 7, e.g. a half-normal prior
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A weakly informative prior (WIP) for ¢

e A WIP for heterogeneity parameter 7, e.g. a half-normal prior

A priori the odds ratio is with 95% probability confined to a certain
range:
P(1/§ < exp(f) < ) = 95%

log(9)
1.96

e Normal prior: o0 =

e Say, conservatively, 6 = 250 implies # ~ N(0, 2.822)

The use of a WIP may be interpreted as a penalizing approach
(Greenland and Mansournia, 2015)
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Cochrane Database: The distribution of the estimates of ¢

8000+

6000+

4000+

Frequency

2000+

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Treatment effect estimates
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Cochrane Database: The distribution of the estimates of ¢

8000+ ]
2.5% || 97.5%

6000+
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24000 |
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2000+

oA I ——
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Further results

e Simulations are conducted to assess the performance of the use of
WIP for 6

e Compared to alternatives, the proposed method displayed

o lower bias for 0

e shorter interval estimates for 6 with somewhat higher coverage than
nominal level

e An R package MetaStan is available on CRAN
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Discussion and outlook

e Use of WIP for # and 7 for the meta-analysis of few studies
involving rare events

e A WIP can be derived for § by considering a priori interval for 6 on
the log-odds ratio scale

e Empirical investigation from the Cochrane Library supports the

proposed WIP

e Future extensions include other type of models, e.g.

e Poisson-Normal Hierarchical model (Béhning et al., 2015), which can
take into account length of follow-up

e Network meta-analysis (Giinhan et al., 2018) models, which
investigates multiple treatments and multi-arm trials

32/39



Conclusion




Conclusion

Phase | dose-escalation trials Phase |l dose-finding trials Meta-analysis of clinical trials
with multiple schedules with multiple schedules of few studies with rare events

Bayesian methods

A time-to-event A weakly informative prior of
e A random-effects model
pharmacokinetic model treatment effect parameter

Simultaneous investigation (Giinhan et al, 2020d)
of multiple schedules
(Giinhan et al, 2020a)

Sequential investigation of
multiple schedules
(Giinhan et al, 2020b) J'

(Giinhan et al, 2020c)
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Conclusion

Phase | dose-escalation trials Phase |l dose-finding trials Meta-analysis of clinical trials
with multiple schedules with multiple schedules of few studies with rare events

Bayesian methods

A time-to-event A weakly informative prior of
e A random-effects model
pharmacokinetic model treatment effect parameter

Simultaneous investigation (Giinhan et al, 2020d)
of multiple schedules
(Giinhan et al, 2020a)

Sequential investigation of
multiple schedules
(Giinhan et al, 2020b) J

(Giinhan et al, 2020c)
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Stan: A programming language

e Calculating posterior distributions can be hard
Conjugate models (analytically solvable) restrict the choice of
likelihood and priors

e Markov chain Monte Carlo methods
Generate samples from posterior distribution

e BUGS-based programs (WinBUGS, JAGS) uses Gibbs and
Metropolis-Hasting samplers

e Stan uses Hamiltonian Monte Carlo sampler, uses the geometric
nature of the target distribution



Vaccine trials

e Unlike drugs, which are given to patients, vaccines are received by
whole population, thus the safety margin should be very high

e Efficacy based on the protection offered: Binomial enpoint
e Immunogenic endpoint: Antibody concentration, continous endpoint

e Phase | trials:

e Oncology vs non-oncology

e Oncology: The higher the dose, the greater the likelihood of efficacy
and toxicity

e DLT cause the halting of the trial

e Phase Il trials:
e Binomial endpoint: Use of a binomial likelihood
e Rare events:

e Binomial endpoint

e Based on the prevalence, we may encounter rare events



Likelihood estimation

e Firth penalization:

e Penalty terms may be specified so that these nudge the MLE into a
desired direction if the maximum is not or poorly defined; one such
example is Firth penalization (Firth, 1993)

e Random-effects meta-analysis

e Bayesian modal estimation to avoid zero estimates (Chung et al,
2013)



Pseudo-PK model

5 mg/daily 20 mg/weekly
0.006 0.006
0.004 0.004
g hi
0.000 0.000

0 1 3 4 0 1

2 2
time (weeks) time (weeks)



Pseudo-PK model

What body does to the drug

dc@
T - ke C(I),
E(f|d,f) — Ceﬂ“(r'd: f)

./i')r* Ceﬂ(tld*’ f*) dt
r*
AUCL(t*|d", ") = / E(t|d*, f*Ydt = 1.

0



Priors in TITE-PK

e TITE-PK: log(B) ~ N(cloglog(P(T < t*|d*, f*) = 0.30), 1.252)
where cloglog (x) = log(-log(1-x))



Everolimus trial

0.80

DLT probabilities

0.00

A) Prior Posterior: Daily C) Posterior: Sequential
Method Method Method
1.00 1.00
4 Bl 4 slAu § slAvmAe
4 TmERK 4 TEPK 4 TmERK ?
¥ chm 0o ¥ cAM o0sof ¥ BoAM
.
0.60 060
[
t--f-F----1q----] ----1{---- o4t --FrF---144----} ----qde--- odop--f-b---394----FF---- ...
. 030 030
S o EEEEE £ EEEEE o B 0204 - =[-b b mm e 020 --* B T T LT
]
0.00 0.00
25 5 75 10 25 5 75 10 25 5 7.5 10
Daily doses (mg/m~2) Daily doses (mg/m~2) Daily doses (mg/mA2)



Dose-escalation decision criteria

Cohort sizes of 3

e Next dose / Current dose < 2

e Minimum number of patients at MTD: 6

e Maximum number of patients: 60

Minimum number of patients: 21

MTD declaration: P(OD) < 0.25



WIP for the heterogeneity parameter

Table 2: Between-schedule heterogeneity Tepg, in Iog(ED;g)): TeDsp referring small to very
large heterogeneity. The “range”, exp(3.92 - Tepy, ), refers to the ratio of the 97.5% to the
2.5% point of the distribution of EDES).

(1)

TEDgg “range” of EDj
0.125 (small) 1.63
0.25 (moderate) 2.66
0.5 (substantial) 7.10
1 (large) 50.40

2 (very large) 2540.20




Simulation setup

e Motivated by the MOR106 trial

e Each generated trial includes one placebo arm and 1, 3, and 10
mg/kg for both bi-weekly and monthly schedules.

e Outcome: Percentage change from baseline in EASI score

e True values for Eg), EY) and o; are taken as -20%, -60%, and 35%

max
for both schedules, respectively.

o ED"Y is 2 mg/kg.
e Sample sizes 45 for each arm.
e 9 scenarios: EDIY™™ € {1,2,3,3.5,4,4.5,5,6,10 (mg/kg)}

e Data-generating process: Emax model

1 000 replications



Scenarios (monthly schedule)

—_ ] ED50 (monthly)
20 o s
) - 20 5.0
c -~ 30 —* 6.0
% -~ 35 —o 10.0
A -40 - o
o)
£
2
© -60]
(@)
C
(4]
N
O

0.0 2.5 5.0 7.5 10.0

Dose (mg/kg)



Comparison of four methods

1. CP (Frequentist): Complete pooling using a frequentist framework
2. CP (Bayesian): Complete pooling using a Bayesian framework

3. PP - FE: Partial pooling with schedule specific fixed-effects for
EDgg using a Bayesian framework

4. PP - RE: Partial pooling with schedule specific random-effects for
EDg’g using a Bayesian framework



Performance measures for the biweekly schedule

1. Mean absolute error
1/|D| Ziep|f(i) — F(i)| at each i (prespecified dose levels), f(i) the
point estimates for the dose-response function (/)

2. Mean coverage probability
Mean coverage probability of the interval estimates evaluated at
each i

3. Mean interval length
Mean length of the interval estimates at each i



Simulation results

e Ratio of the Cl lengths obtained by PP - FE to PP - RE

1
1
|
1
1
1
|
|
T

-_—
o
S
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Bococizumab trial: NCT01592240

- . A Schedul D
e A phase Il dose-finding trial: o scheduie e

. N (mg)

Bococizumab investigated for

the treatment of 1 B!'Weekly 0

hypercholesterolemia 2 B!'Weekly 2

3 Bi-weekly 100

e Primary outcome: 4 Bi-weekly 150

The change from baseline in 5 Monthly 0

low-density lipoprotein 6 Monthly 200

cholesterol (LDL-C) at Day 85 7 Monthly 300




Simulation settings

e Numbers of studies:
k € {2,3,5}

e Treatment effects:
0 e{-5—4,-3,-2-1,-05,0,05,1,2,3,4,5}

e Baseline risks pi; on the probability scale are taken uniformly
between 0.005 and 0.05.

e The degree of heterogeneity (7 = 0.28) and sample sizes are based
on Cochrane Database.

e Data-generating process: BNHM



Comparison of five meta-analysis methods

1. WIP: WIP for 7 and WIP for §, BNHM

2. vague: WIP for 7 and vague prior for 6 (6 ~ N(0,100%)), BNHM
3. MLE: BNHM

4. MH: Mantel-Haenszel method, a fixed-effect method

5. BBM: Beta-binomial model (Bayesian)



Simulation results

Method
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Simulation results
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Effects of treatment coding (Jackson et al., 2018)

We nave

logit(r) | _ Yi 00
logit(;1) yi+0 )\ 0 ’

and from Equation 2, for model 4, we have
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An R package for meta-analysis using Stan: MetaStan

Available on CRAN

install.packages("MetaStan")

Fitting a BNHM using WIP for 6 and 7

meta_stan(data = mydata,
nctrl = nctrl,
rctrl = rctrl,
ntrt = ntrt,
rtrt = rtrt,
tau_prior_dist = "half-normal",
tau_prior = 0.5,
delta = 250)

vignette ("MetaStan_BNHM")
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